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Abstract. Using analytical series expansion by continuous unitary transformations we study the magnetic
properties of a frustrated tetrahedral spin- 1

2
chain. Starting from the limit of isolated tetrahedra we an-

alyze the evolution of the ground state energy and the elementary triplet dispersion as a function of the
inter-tetrahedral coupling. The quantum phase diagram is evaluated and is shown to incorporate a singlet
product, a dimer, and a Haldane phase. Comparison of our results with those from several other tech-
niques, such as density matrix renormalization group, exact diagonalization, bond-operator theory and
other numerical series expansion are provided and convincing agreement is found.

PACS. 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics – 02.30.Mv Approximations
and expansions

1 Introduction

Geometric frustration is an important aspect of mag-
netism. In particular, magnets on triangular or tetrahedral
lattices have been of recent interest because of their po-
tentially exotic phases [1]. Introducing spatially inhomoge-
neous exchange couplings in geometrically frustrated spin
systems is an additional issue since it can lead to quan-
tum phase transitions between such exotic phases. In this
context, and motivated by various transition metal com-
pounds [2–4], models of one-, two- and three-dimensional
(1, 2 and 3D) networks of frustrated spin-1/2 tetrahe-
dra, with variable inter-tetrahedral exchange couplings,
have been investigated recently [2,3,5–12]. In 1D, the ef-
fect of inter-tetrahedral coupling has been analyzed us-
ing bond-boson mean field theory (MFT), exact diagonal-
ization (ED) [13] and effective Hamiltonians [14]. In 3D,
molecular field theories [5,6] and numerical(analytical) se-
ries expansions (SE) up to 4th(2nd) order have been car-
ried out [15]. Rich quantum phase diagrams with several
competing states were observed in all cases.

The SE technique used in reference [15] would allow for
considerably higher orders to be evaluated if applied to a
1D situation therefore improving the earlier analysis of the
1D tetrahedral chains. Such analysis has not been done
up to now. Therefore it is the primary aim of this work
to perform high order analytic SE expansion. Moreover
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Fig. 1. Tetrahedral cluster-chain. The unit cell, labelled with
l, contains spin-1/2 moments si l at vertices i = 1, . . . , 4 (solid
circles). All couplings are in units of J1 (dashed lines).

high order SE for the 1D case will also allow for a closer
comparison with results obtained by other means.

To set the scene, we briefly repeat some facts on
the tetrahedral spin-1/2 chain, shown in Figure 1, which
we will investigate, and which were introduced in refer-
ences [13,14]. The tetrahedra correspond to the sites 1–4
with couplings J1 and J2 = aJ1. Inter-tetrahedral ex-
change occurs through J3 = bJ1. The Hilbert space of
a single tetrahedron is listed in Table 1. The Hamiltonian
of the chain can be written in terms of the total edge-spin
operators P1(2),l = s1(4),l + s3(2),l, where si,l denotes a
spin-1/2 at vertex i on the tetrahedron at site l

H

J1
=

L/2∑

l=1

[
P1,lP2,l +

a

2
(
P2

1,l + P2
2,l − 3

)
+ bP2,lP1,l+1

]
.

(1)
L is the number of rungs, i.e. sites coupled by J2 = aJ1.
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Table 1. Eigenstates of a single tetrahedron: singlets (S1,S2);
triplets (T1, T2,3) and Quintet (Q). Each state is labelled by
the P1,2 edge-spin quantum numbers and the energy E/J1.
Site index l suppressed.

P1 P2 E/J1

S1 1 1 −2 + a/2

S2 0 0 −3a/2

T1 1 1 −1 + a/2

T2,3 0,1 1,0 −a/2

Q 1 1 1 + a/2

The Hamiltonian commutes with the edge spin, i.e.
[H,P2

i(=1,2),l] = 0; ∀ l, i = 1, 2. Hence, the Hilbert space
decomposes into sectors of fixed distributions of locally
conserved edge-spin eigenvalues Pi,l, each corresponding
to a sequence of spin-1 chain-segments (Pi,l = 1) inter-
mitted by chain-segments of localized singlets (Pi,l = 0).
It has been shown in reference [13] that the ground state
of equation (1) occurs only within the homogeneous sector
of purely S2 states or in the Pi,l = 1, ∀i, l sector. Keeping
b fixed and for a → ∞, the ground state must result from
local S2 type of states. This is a trivial, decoupled sin-
glet product phase with singlets on each rung. The ground
state energy per tetrahedron in this phase is independent
of b and it is given by: eg S2 = −3a/2. In the opposite limit
a → 0 the ground state is in the Pi,l = 1, ∀i, l sector.

For Pi,l = 1, ∀i, l the tetrahedral chain is equivalent
to that of a dimerized spin-1 chain with L sites

H

J1
=

L∑

l=1

[S2l−1S2l + bS2lS2l+1] +
a

4
L, (2)

where the edge-spin operators P1,l = S2l−1 and P2,l =
S2l have been relabelled in terms of spin-1 operators Sl.
The dimerized spin-1 chain is known to have a second
order quantum phase transition at b = bc between a
dimer phase (b < bc) and the Haldane phase (b > bc),
as first pointed out by Affleck and Haldane [16,17]. The
a-dependence in equation (2) is reduced to a constant term
and then it has no influence on the location of the tran-
sition. We will analyze the transition in Section 4 by SE
in terms of b and compare our results with those obtained
from other methods.

2 Series expansion by continuous unitary
transformation

The Hamiltonian of the tetrahedral chain (Eq. (1)) can be
written as

H

J1
= H0 + aTa 0 + b

N∑

n=−N

Tb n. (3)

H0 is the sum over local tetrahedral Hamiltonians at
a = 0. Their spectra consist of four equidistant energy lev-
els E/J1 = −2,−1, 0, 1 (see Tab. 1). With these levels we

associate a number ql of local energy quanta ql = 0, . . . , 3.
Together with P1,2, this characterizes the basis. H0 has
an equidistant ladder spectrum labelled by Q =

∑
l ql.

Q = 0 refers to the unperturbed ground state of H0:
|0〉 ≡ |S1,1 . . .S1,L/2〉, i.e. an S1 singlet product. The
Q = 1 sector of H0 consists of linear combinations of local
T1,j triplet excitations |tj〉 ≡ |S1,1 . . . T1,j . . .S1,L/2〉, with
a T1,j triplet on the tetrahedron at site j. Ta 0 refers to
the sum over the local terms proportional to a in equa-
tion (1). By construction, this term is diagonal in the basis
of H0. The third term in equation (3) refers to the inter-
tetrahedral coupling via b. The operators Tb n non-locally
create (destroy) n ≥ (<) 0 quanta within the ladder spec-
trum of H0. For our model N ≤ Nmax ≡ 6, in princi-
ple. Explicit calculation of the Tbn, however, shows that
N ≤ 4 [18]. By a shift of 1/2 of the unit cell, equation (1)
is symmetric under (J1, a, b) → (J1b, a/b, 1/b). Therefore,
to cover the parameter space a, b ∈ [0,∞] is sufficient to
consider the range a ∈ [0,∞] and b ∈ [0, 1].

It has been shown [19–21] that models of type equa-
tion (3) allow for high-order SE using a continuous unitary
transformation generated by the flow equation method of
Wegner [22]. Adapted to our case, the mapping of equa-
tion (3) onto the unitarily rotated effective Hamiltonian
Heff reads [19,21]

Heff = H0+aTa 0

+
∞∑

n=1

bn
∑

|m| = n
M(m)=0

C(m) Tb m1Tb m2 . . . Tb mn , (4)

where m = (m1, . . . , mn) is an n = |m|-tuple of in-
tegers, each in a range of mi ∈ {0,±1, . . . ,±N} and
M(m) ≡

∑n
i=1 mi. A main advantage of this method is

that, in contrast to H of equation (3), Heff is constructed
to conserve the total number of quanta Q at each order
n, allowing for easy access to several quantities using the
bare eigenstates of H0 (see [15]).

3 Ground state energy and triplet dispersion

Now we discuss results for the ground state energy Eg and
the triplet dispersion ω(k) in the dimer phase as obtained
from SE with respect to the inter-tetrahedral coupling b.
Q-conservation leads to

Eg = 〈0|Heff |0〉, (5)

where |0〉 = |S1,1 . . .S1,L/2〉 and Heff is the effective
Hamiltonian given by equation (4). Wrap-around of
graphs up to length n will not occur if this matrix element
is evaluated on chains with n + 1 tetrahedral clusters and
periodic boundary conditions (PBC). This is required by
linked-cluster theorem [23] and leads to SE’s valid to O(n)
in the thermodynamic limit, i.e. for infinite-sized systems.
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Fig. 2. Ground state energy per tetrahedron eg(a, b)−eg(a, b =
0) versus b in the dimer phase.

We have evaluated Eg up to O(8). The ground state
energy per tetrahedron eg in the dimer phase reads

eg(a, b) = −2 +
a

2
− 2 b2

3
− b3

6
+

b4

108
− 67 b5

1620

− 53273 b6

1749600
+

27311519 b7

5038848000
− 414299313497 b8

17459608320000
. (6)

The first two terms in equation (6) correspond to the non
interacting energy of the S1 state as in Table 1. For a = 0
equation (6) is also a SE of the ground state energy per
dimer of the dimerized spin-1 chain. To our knowledge,
equation (6) has not been published previously. Figure 2
depicts the ground state energy, which is a monotonously
decreasing function of the inter-tetrahedral coupling b. We
find that plots of eg(a, b) to O(7) and O(8), as well as the
different Padé approximants [24], are indistinguishable on
the scale of Figure 2, which provides an estimate of the
convergence. Using eg(a, b) we will discuss the first order
critical line bc(ac) for the dimer-to-singlet transition in
Section 4. Trivially, the non-interacting critical point is
bc(1) = 0 (Tab. 1).

To calculate the triplet dispersion we have to con-
sider the subspace of exactly one T1,j−type of excitation:
|tj〉 = |S1,1 . . .T1,j . . .S1,L/2〉, i.e. one-triplet T1,j on a
tetrahedron at site j. Q conservation implies that Heff can
only translate the triplets |tj〉, i.e. Heff |tj〉 =

∑
i ci|tj+i〉.

Diagonalization in momentum space leads to the triplet
dispersion

ω(k) ≡ 〈tk|Heff |tk〉 − Eg

= c0 − Eg +
∞∑

j=1

2cj cos(kj). (7)

We have evaluated the coefficients ci up to O(8). To our
knowledge, an analytic expression for the triplet disper-
sion of a dimerized spin-1 chain has not been obtained

Fig. 3. Elementary triplet dispersion in the spin-1 dimer phase
for b = 0.1, 02 and 0.3. Solid line: SE from equation (A-1).
Dash-dotted line, dashed line, and solid dots: MFT, LHP ap-
proximation, and ED from [13]. A tendency to close the gap
∆ ≡ ω(k = 0, b) can be observed as b increases.

previously. This result is displayed explicitly in equa-
tion (A-1) in Appendix A. Our calculation to O(8) sig-
nificantly extends earlier SE to O(4), obtained in refer-
ence [15] for a 3D generalization of the 1D tetrahedral
chain.

In Figure 3 we compare our SE results for ω(k, b) with
findings from ED on dimerized spin-1 chains [13], as well as
bond-operator MFT and a linearized Holstein-Primakoff
(LHP) approach [13]. While it is clear from this figure
that at b 
 1 all methods agree very well, it is also obvi-
ous that, upon increasing b, SE and ED agree best. This
is consistent with the fact that the MFT and LHP are
approximations which are strictly valid only in the limit
of vanishing inter-tetrahedral coupling [13]. The quality
of these approximations at finite b remains uncontrolled.
Figure 3 also shows that there is a tendency of the gap to
close at k = 0 as b increases. This signals the transition
to the Haldane phase and will be analyzed in detail in
Section 4.

4 Quantum phase transitions

In this Section we consider the critical points of our model.
Figure 4 summarizes the phase diagram of the tetrahe-
dral cluster spin chain as determined from the present SE
and other methods [13,14]. It displays the singlet prod-
uct, dimer and Haldane phases. These regions are sepa-
rated by a first order critical line between the dimerized
spin-1 chain sector and the singlet product phase, as well
as the second order critical line between the dimer and
the Haldane phases.

We start by studying the dimer-to-singlet transition.
The solid line represents our evaluation of the critical
line bc(ac) using SE. It has been obtained by solving
eg(a, b) − eg S2 = 0, where eg S2 = −3a/2 is the exact
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Fig. 4. Quantum phase diagram of the tetrahedral cluster
chain. Solid: first order dimer-to-singlet critical line bc(ac) ob-
tained from SE. Dashed and dots: bc(ac) from MFT and ED
in the dimerized spin-1 sector for N = 16 sites and PBC
(Ref. [13]). Horizontal solid line at bc ∈ [0.610, 0.613]: sec-
ond order dimer-to-Haldane transition obtained by Dlog-Padé
analysis of the triplet-gap closure of equation (A-1). (See also
Fig. 5.)

ground state energy of the singlet-product phase, for b(a).
Obviously, there is an excellent agreement with ED re-
sults [13,25] (dotted line in Fig. 4). This is true even for
b-values beyond the dimer-Haldane transition, where the
SE is not expected to be valid anymore. I.e. the ground
state energy of the Haldane phase differs only little from
that of an adiabatically continued dimer phase.

While the accuracy of approximate bond-operator ap-
proaches, eg. MFT [13], is hard to asses, it is interesting
to see from Figure 4 that SE and ED agree very well with
the latter approach at least up to b ≈ 0.5, which gives an
estimation of the range of validity of the MFT calculation.

We now turn to the dimer-Haldane transition, which
has been studied by many authors. The first analysis was
carried out by Affleck and Haldane [16,17], by mapping
onto the O(3) nonlinear σ−model (NLSM) for S � 1.
They showed that the topological angle θ is given by θ =
2πS(1−δ), where δ = (1−b)/(1+b), and that the system is
gapless when θ/π is integer. Therefore, for S = 1 a gapless
point was predicted at bc = 1/3(δc = 1/2), which is not
expected to be quantitative correct since 1/S-corrections
may play a role and have not been analyzed.

Numerically, the dimer-Haldane transition was stud-
ied employing Density Matrix Renormalization Group
(DMRG) [26,27], Quantum Monte Carlo (QMC) [28,29],
and ED techniques [13,30,31]. These methods agree on
a critical point at bc(δc) 
 0.6(0.25). SE by a method
different from the continuous unitary transformation was
also applied to the dimerized spin-1 chain [32,33]. From
SE reference [32], bc ∈ [0.56, 0.64] was obtained from the
second moment of the equal time structure factor in the
ground state. From SE reference [33], bc ∈ [0.608, 0.616]
was reported from an O(8) SE of the triplet gap. These
SE approaches, however, did not give analytic results for

Fig. 5. Dashed and solid lines: plain O(8) SE (Eq. (A-1)),
and its integrated Dlog-Padé (3, 4) approximant, for the one-
triplet gap ∆ ≡ ω(k = 0, b). Axes have been scaled to allow for
a comparison with other methods. Dots: ED on N = 16 sites
with PBC in the dimerized spin-1 sector [13]. Crosses: DMRG
results from [26]. Inset: zoom of the transition region.

the triplet gap and dispersion, or for the coefficients of the
series expansion. One of the main advantages of our SE ap-
proach is that it provides such results, i.e. equation (A-1).

Figure 5 shows the integrated (3, 4)-Dlog-Padé approx-
imant for the triplet gap from our SE at O(8). As from
equation (A-1), the gap is located at k = 0, π. The axes
have been scaled to allow for a comparison with two other
approaches, i.e. ED on N = 16 sites with PBC in the
dimerized spin-1 chain sector [13] and DMRG results from
reference [26]. The last two cover the complete range of
b(δ) ∈ [0, 1]([1, 0]). For b(δ) � 0.4(� 0.4), there is a very
good agreement among all three approaches displayed. For
greater (smaller) values of b(δ) finite size effects become
evident in the ED data. The results from the SE, how-
ever, remain very close to the DMRG over the complete
range of inter-tetrahedral couplings, up until the critical
point. From the inset of Figure 5 one can observe that
the SE slightly over(under) estimates the critical value of
bc(δc) as compared to the findings of DMRG. In fact, per-
forming standard Dlog-Padé error analysis [24], by evalu-
ating the scatter of the critical point bc(δc) obtained from
different approximants, we get bc(δc) ∈ [0.610, 0.613](∈
[0.239, 0.241]), whereas DMRG gives bc(δc) ∈ [0.59, 0.61]
(∈ [0.24, 0.26]) [26]. The small difference may be due
to non analytic corrections to a plain power-law behav-
ior of ∆. Indeed, the gap has been claimed to close as
∆ ∼ (λ)

2
3 /| logλ| 12 , with λ = |b − bc|/bc, in the vicinity

of the critical point [30,34]. In case of such logarithmic
corrections, deviations as those shown in the inset of Fig-
ure 5 are likely to occur due to the asymptotic behavior
of the series very close to the critical point. Further ev-
idence for the relevance of logarithmic corrections stems
from the critical exponent of ν ∈ [0.96, 0.98] which we ex-
tract from the Dlog-Padé approximant which, as can be
seen also from Figure 5, varies almost linearly with b(δ)
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close to the critical point. This is at variance with ex-
trapolation of ED data, which predicts a critical effective
exponent ν ∈ [0.7, 0.8] (∆ ∼ λν) [30], and with the on-
set of additional curvature which can be observed in the
DMRG results close to bc(δc) in the inset of Figure 5. This
issue should be addressed in future studies.

5 Conclusions

To summarize, we have studied zero temperature prop-
erties of a tetrahedral cluster spin chain using an an-
alytical series expansion technique based on Wegner’s
flow equation method. Starting from the limit of isolated
tetrahedra, we have obtained results for the ground state
energy and the dispersion of the elementary one-triplet
excitations within the dimer phase to O(8) in the inter-
tetrahedral couplings. The ground state energy has been
used to determine a first order quantum critical line which
separates a dimerized spin-1 chain sector from a singlet
product phase. The second order critical line of the dimer-
to-Haldane phase transition was obtained by analyzing the
closure of the triplet gap. Very good agreement was found
with the previous results from ED, DMRG, QMC and
other SE techniques.

Finally, we note that the continuous unitary transfor-
mation also allows for the evaluation of two-particle prop-
erties and spectral functions [35]. These quantities could
be of interest at the critical lines and should be considered
in future work.

We thank A. Honecker, D.C. Cabra, F. Heidrich-Meisner and
G. Rossini for discussions and comments. This research was
supported in part through DFG Grant No. BR 1084/4-1.
Preparing this manuscript, one of us (W.B.) has benefitted
from the hospitality of the KITP at UCSB and partial support
trough NSF Grant No. PHY99-07949.

Appendix A

In this appendix we give an analytic expression for the
triplet dispersion ω(k, b) in the dimerized spin-1 chain
phase up to O(b8)

ω(k, b) =
(

1 +
8 b2

27
+

19 b3

27
− 571 b4

972
+

183943 b5

233280

−391390595851 b6

380936908800
+

913820919969227 b7

511979205427200

−14952558202581781446149 b8

3831857165099335680000

)

+
(
−4 b

3
− 2 b2

3
+

26 b3

27
− 29 b4

54
+

145237 b5

98415

−4087919 b6

1959552
+

10916063988776383 b7

2879883030528000

−36238690659582694067 b8

4838203491287040000

)
cos(k)

+
(
−4 b2

9
− 2 b3

9
− 7285 b4

34992
+

912407 b5

699840

−18113617135 b6

10158317568
+

485683037077901 b7

142216445952000

−130094542523361917309 b8

19905751507009536000

)
cos(2k)

+
(
−8 b3

27
− 32 b4

81
+

1558441 b5

3149280

−135853999 b6

220449600
+

53288026128863 b7

21332466892800

−735512137634711051 b8

140794281492480000

)
cos(3k)

+
(
−20 b4

81
− 268 b5

729
− 22011727 b6

94478400

+
5321414051 b7

3429216000
− 1053001348140670001 b8

403183624273920000

)
cos(4k)

+
(
−56 b5

243
− 3068 b6

6561
+

2345836457 b7

25509168000

−190707195454693 b8

349985784960000

)
cos(5k)

+
(
−56 b6

243
− 32332 b7

59049
− 813174250853 b8

2295825120000

)
cos(6k)

+
(
−176 b7

729
− 360560 b8

531441

)
cos(7k) − 572 b8

2187
cos(8k).

(A-1)

Interestingly, the leading order contribution of each har-
monic of this series agrees with that obtained from bond-
operator MFT [13]. There, ωMFT (k, b) = (1 + 2εk)1/2,
with εk = − 4

3b cosk. We have observed the same relation
to be true also between SE [21] and the MFT technique
of reference [13] for the dimerized spin-1/2 chain.
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